Re-evaluating the ion-atom interaction potential
in low energy ion scattering
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Introduction Screened Coulomb Potentials I

> Although elemental identification and compositional information only requires the > Thomas Fermi Moliére (TFM): :
binary collision model, the ion-surface interaction potential (IP) is a prerequisite for
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undertaking any detailed structural analysis with ion beam techniques, including N
CAICISS (coaxial impact collision ion scattering spectroscopy). 1E3 N
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experimental results. This is typically done by multiplying the screening length by a x
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Coaxial impact collision ion scattering spectroscopy (CAICISS) \_ )
» Coaxial impact collision ion scattering spectroscopy @ offers the chance to probe the FAN Simulation Code 3
structure and composition of surfaces with a high degree of surface specificity. The

technique has been used to study a range of surface science problems, including real-
time growth, surface reconstructions and metal oxide / alloy formation. » Enables fast simulations of trajectories (ions & neutrals). Designed specifically for
backscattering techniques.

» Time-of-flight = composition information from binary collision. Shadow cones =
structural information from ion-target interaction. In these experiments an incident
beam of He* with an energy of 3 keV was used.

» Simulations in both polar & azimuthal rotations. Trial structures can incorporate three
different atomic species.

» Enables choice of interaction potential (TFM or ZBL) and screening factor. Includes

» Intensity vs. polar angle plot for each element are compared to simulations generated
temperature and neutralisation effects, as well as off-axis scattering.

using the FAN code Bl

» More information at http://uk.geocities.com/phrxaj/CAICISS.htm .
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CAICISS results
The clean Cu(100) surface ¥ Clean Pt(111) 9 InN(0001)
T T T T T - » Recent high-resolution XPS data taken at NCESS facility suggests In-polarity InN
LEED@ 64ev (&= has a contracted layer termination, in analogy to GaN(0001). This is supported by
s = CAICISS analysis using a correction factor of 0.70.
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