
Kinematic factor derivation

Presented here is a full derivation of the kinematic factor using in ion scattering.

Figure 1 shows a schematic of the binary collision model used in ion scattering.

Figure 1: Schematic demonstration of an ion scattering from a surface atom. An
ion with mass m1 and kinetic energy E0 (velocity v0) is incident at an angle α
on a target atom with mass m2. The ion is scattered through an angle θ with
respect to the incident direction, losing kinetic energy to the target atom during
the collision. The scattered ion possesses a kinetic energy E1 (velocity v1), whilst
the target atom recoils with a kinetic energy E2 (velocity v2) at an angle φ with
respect to the incident direction.

Conservation of energy gives:
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Rearranging this equation leads to:

v2
2 = m1(v

2
0 − v2

1) (2)

i



Conservation of momentum parallel to the incident direction can be expressed by:

m1v0 = m1v1 cos θ + m2v2 cos φ (3)

This can be rearranged and squared to give:
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Momentum perpendicular to the incident direction is given by:
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Rearranging this equation and squaring gives:
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Adding equations 4 and 6 gives:
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Recognising that cos2 θ + sin2 θ = 1 leads to:
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Substituting equation 2 into the right hand side of equation 8 gives:
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Dividing both sides by m2
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Setting m2/m1 = A and rearranging gives:
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This is a quadratic in v1/v0. Using the quadratic formula:
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with X = v1/v0, a = (1 + A), b = 2cos θ and c = (1 - A) leads to:
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This reduces to:
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Multiplying out the terms included in the square root gives:
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However, cos2θ - 1 = - sin2 θ, so:
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As the kinematic factor, k = E1 / E0 = m1v
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For CAICISS, θ = 180◦, so:
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